TRNSYS Type 451

Vertical Borehole Heat Exchanger
EWS Model

Version 2.4

Model description and implementing into TRNSYS

Developed in the project
Low Temperature Low Cost Heat Pump Heating System

carried out by the Information Center for Electricity Applications
under contract of the Swiss Federal Office of Energy

Michael Wetter, ZTL Luzern
Arthur Huber, Huber Energietechnik, Zürich

October 23, 1997
Type451: Vertical Borehole Heat Exchanger, EWS Model

General description

With this TRNSYS type, vertical borehole heat exchangers with double-U-pipes can be simulated. They are normally used as heat sources for ground coupled heat pumps. But it is also possible to use them directly (without a heat pump) in air-conditioning systems for cooling purposes.

To simulate heating systems with heat pumps, it is very important, that short time steps can be simulated and the transient behavior is calculated properly, since most of these heat pumps are controlled by turning the pump on and off. Measurements have shown that the start up losses (cycling losses) of heat pumps normally cannot be neglected. Therefore it is also important that the model of the heat source is able to predict the transient behavior correctly. Furthermore, a PC should take not more than a few minutes of computational time for the simulation of a whole year.

The problem can be solved by a simulation of the transient heat flux in the earth within a radius of about 2 m around the borehole with the Crank-Nicholson algorithm. In the vertical direction, the earth is divided into several, horizontal layers. Each layer can have thermal properties of its own. The brine is simulated dynamically to take into account the transient behavior when starting up. For the outer boundary condition, the analytical formula of Werner [5] for constant heat extraction could be adapted for the present problem. This formula belongs to a group of analytical solutions first described by Kelvin in his line source theory. By superposing constant heat extractions, starting at different time steps, it is possible to calculate the temperature profile at the outer boundaries of the simulation area and even to predict properly the refilling of the temperature sink in the summer.

A more comprehensive description of the used models and a comparison of calculations with measurements can be found in [2]. In these comparisons the transient behavior was investigated as well as the long term behavior over a period of 4½ years. They showed very good correspondence between calculation and measurement. To get such a good result, though, it is crucial to know the thermal properties of the ground and the temperature profile at the beginning of the simulation period. The best model cannot help, if they are not known. Usually a good guess for the thermal properties can be found in [4].

Fig. 1: Simulation of the earth next to the borehole with Crank-Nicholson schema and analytical outer boundary conditions with an adaptation of the formula of Werner [5]
Symbols

Variables

\(\alpha_0 \) Heat transfer coefficient from the brine to the pipes at non operating mode
\(\alpha_1 \) Heat transfer coefficient from the brine to the pipes, when the pump is running
\(\Delta \) Difference
\(\lambda \) Thermal conductivity
\(\nu \) Kinematic viscosity
\(\rho \) Density
\(\xi \) Friction factor
\(C \) Heat capacity
\(c \) specific heat capacity
\(D_b \) Borehole diameter
\(D_i \) Inner diameter of the pipes
\(dl \) Length of a borehole element
\(dt \) Internal time step to calculate the earth
\(dt2 \) Internal time step to calculate the brine
\(f \) grid factor in radial direction
\(L \) Thermal conductance
\(L_{q} \) Thermal conductance of the flowing brine in vertical direction
\(L_1 \) Thermal conductance between the brine and the filling material
\(m \) mass of the brine in the element \(dl \) in 2 pipes
\(\dot{q} \) Specific heat extraction
\(r \) Radial distance from the borehole axis
\(r_o \) Inner radius of the pipes
\(r_1 \) Radius of the borehole
\(r_m \) Radius of the outer boundary of the simulation area
\(rz \) Radial center of gravity
\(R \) Thermal resistance
\(R_a \) Internal thermal resistance
\(R_b \) Borehole thermal resistance
\(t \) time
\(T \) Temperature
\(T_b \) Borehole temperature
\(T_{Earth} \) Temperature of the earth
\(T_{Down} \) Temperature of the downward flowing brine
\(T_{Up} \) Temperature of the upward flowing brine
\(T_{Source} \) Source temperature (brine coming out of the vertical borehole heat exchanger)
\(T_{Sink} \) Brine temperature at the inlet of the vertical borehole heat exchanger
\(v \) Brine velocity in the pipes

Indices

\(\text{DimAxi} \) Number of grid points in axial direction
\(\text{DimRad} \) Number of grid points in radial direction
\(i \) Axial coordinate
\(j \) Radial coordinate
\(k \) time coordinate
\(\text{lam} \) Laminar
\(p \) constant pressure
\(\text{turb} \) Turbulent
\(\text{Erde} \) Earth
\(\text{Fill} \) Filling material
\(\text{Sole} \) Brine
\(t \) Time
\(\text{Woche} \) week of focus for the outer boundary conditions

Dimensionless Numbers

\(\text{Nu} \) Nusselt Number
\(\text{Pr} \) Prandtl Number
\(\text{Re} \) Reynolds Number
The Crank - Nicholson schema

In radial direction the one-dimensional heat equation or Fourier equation has to be solved:

\[
\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c_p} \frac{\partial^2 T}{\partial x^2} \quad \text{with} \quad T = T(t,x)
\]

Eq. 1

As an implicit equation of differences it is written as:

\[
T_{k+1,j} - \frac{\partial^2 L_{j}}{C_f} \left(T_{k+1,j-1} - T_{k+1,j} \right) \quad \frac{\partial^2 L_{j}}{C_f} \left(T_{k+1,j+1} - T_{k+1,j} \right) =
\]

\[
T_{k,j} + \frac{dt}{2} \frac{\partial^2 L_{j}}{C_f} \left(T_{k,j-1} - T_{k,j} \right) + \frac{dt}{2} \frac{\partial^2 L_{j+1}}{C_f} \left(T_{k,j+1} - T_{k,j} \right)
\]

Eq. 2

Index \(k \) belongs to the time coordinate and index \(j \) to the radial coordinate. \(C \) is the capacity which is described below. \(L \) is the conductance, the reciprocal of a resistance:

\[
L = \frac{1}{R} = \frac{Q}{\Delta T}
\]

Eq. 3

The grid in radial direction is variable. It is defined by the grid factor

\[
\text{grid factor} \quad f = \frac{r_{j+1} - r_j}{r_j - r_{j-1}}
\]

Eq. 5

A grid factor 2 doubles the difference of the radiuses of two neighboring calculation volumes.

The simulation area is defined by pre-setting a maximum radius. The grid is given then by the following expression:

\[
r_0 = D_i/2 = \text{inner radius of the pipes} \\
r_1 = D_b/2 = \text{radius of the borehole} \\
r_m = \text{maximum radius of the simulation area} \\
\]

\[
j \geq 2: \quad r_j = r_{j-1} + (r_m - r_1) \frac{1-f^{j-1}}{1-f^{j-2}}
\]

Eq. 6

Fig. 2: Cylindrical coordinate system to solve the one-dimensional heat equation for each axial layer, with thermal properties of its own in each layer.

Fig. 3: Overview of the naming in a vertical layer

Arithmetical grid

In axial (vertical) direction, the borehole heat exchanger and the adjacent earth are divided into equidistant layers of length

\[
dl = \frac{\text{boorehole length}}{\text{DimAxI}}
\]

Eq. 4

The simulation area is defined by pre-setting a maximum radius. The grid is given then by the following expression:

\[
r_0 = D_i/2 = \text{inner radius of the pipes} \\
r_1 = D_b/2 = \text{radius of the borehole} \\
r_m = \text{maximum radius of the simulation area} \\
\]

\[
j \geq 2: \quad r_j = r_{j-1} + (r_m - r_1) \frac{1-f^{j-1}}{1-f^{j-2}}
\]

Eq. 6
Definition of capacities and resistances

Heat capacities

Heat capacities are defined for the filling material and for all layers of the surrounding ground. The heat capacity of the pipe wall is ignored:

\[
C_1 = c_{\text{p, Fill}} \rho_{\text{Fill}} \pi (r_1^2 - 4 \ r_0^2) \text{dl}
\]

\[
C_2 = c_{\text{p, Erde}} \rho_{\text{Erde}} \pi (r_2^2 - r_3^2) \text{dl}
\]

\[
C_3 = c_{\text{p, Erde}} \rho_{\text{Erde}} \pi (r_3^2 - r_2^2) \text{dl}
\]

Eq. 7

Thermal resistances

The heat resistances of the filling and the ground are:

\[
R_1 = \frac{1}{4} \left(\frac{1}{2 \ \pi \ r_0 \ \text{dl}} + \frac{1}{2 \ \pi \ \rho_{\text{Fill}} \ \text{dl}} \ln \left(\frac{r_0 - r_1}{r_0} \right) \right)
\]

Eq. 8

\[
R_2 = \frac{1}{2 \ \pi \ \text{dl}} \left(\frac{1}{\rho_{\text{Fill}} \ ln \left(\frac{r_1}{r_2} \right)} + \frac{1}{\rho_{\text{Erde}} \ ln \left(\frac{r_2}{r_1} \right)} \right)
\]

Eq. 9

\[
R_3 = \frac{1}{2 \ \pi \ \rho_{\text{Erde}} \ \text{dl}} \ln \left(\frac{r_3}{r_2} \right)
\]

Eq. 10

\[
R_4 = \frac{1}{2 \ \pi \ \rho_{\text{Erde}} \ \text{dl}} \ln \left(\frac{r_1}{r_2} \right)
\]

Eq. 11

\[R_3 \text{ and } R_4 \text{ can be obtained analytically. With } R_1 \text{ and } R_2 \text{ this is not possible, since we do not know the precise location of the pipes in the borehole. So far, we assumed that they are rather peripherally located. But the user of the present TRNSYS-Type is free to use any other value for R1, since R1 can optionally be set as an input parameter. As a third possibility, we can use the internal thermal resistance} \]

\[
R_u = \frac{4 \ \text{dl}}{R_1}
\]

Eq. 12

and the borehole thermal resistance

\[
R_b = \frac{dl (T_{\text{Soil}} - T_h)}{Q}
\]

Eq. 13

as they were defined by Hellström [1].

If only Rb is given instead of R1, then R1 can be calculated with the following equation:

\[
R_1 = \frac{R_{nb}}{dl} - \frac{1}{2 \ \pi \ \rho_{\text{Fill}} \ \text{dl}} \ln \left(\frac{r_1}{r_2} \right)
\]

Eq. 14

If R3 and Rb are given as parameters, then R1 can be calculated with

\[
R_1 = \frac{R_3}{4 \ \text{dl}}
\]

Eq. 15

and R2 with

\[
R_2 = \left(\frac{R_3 R_{nb}}{4} \right) - \frac{1}{2 \ \pi \ \rho_{\text{Erde}} \ \text{dl}} \ln \left(\frac{r_2}{r_1} \right)
\]

Eq. 16

With the input parameter calcBTR the preferred option can be chosen by the user:

<table>
<thead>
<tr>
<th>calcBTR</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eq. 8</td>
<td>Eq. 9</td>
</tr>
<tr>
<td>2</td>
<td>R1 given as input</td>
<td>Eq. 9</td>
</tr>
<tr>
<td>3</td>
<td>Eq. 14</td>
<td>Eq. 9</td>
</tr>
<tr>
<td>4</td>
<td>Eq. 15</td>
<td>Eq. 16</td>
</tr>
</tbody>
</table>

Fig. 4: Double-U-pipe borehole system
Solving the equations

Eq. 2 can be rewritten as a matrix equation:

$$[A] \cdot \{T\}_{j}^{k+1} = [F] \cdot \{T\}_{j}^{k}$$

Eq. 17

To find the new temperature field, the Matrix A has to be inverted

$$\{T\}_{j}^{k+1} = [B] \cdot \{T\}_{j}^{k}$$

Eq. 18

where B is defined by:

$$[B] = [A]^{-1} \cdot [F]$$

Eq. 19

Non steady-state calculation of the brine

The brine temperature is used as the inner boundary condition for the simulation of the earth with the Crank-Nicholson schema. If we set the flag Stationer = 0 then the brine temperature is calculated with an explicit, non-steady-state time-step method.

The velocity of the brine in the pipes can be calculated with the mass flow rate:

$$v = \frac{\dot{m}}{2 \pi r_0^2 \rho_{\text{Sole}}}$$

Eq. 20

As in the radial direction, we can define a thermal conductance in axial direction:

$$L_{\text{ax}} = c_p \rho_{\text{Sole}} \dot{m} = 2 \pi r_0^2 \rho_{\text{Sole}} c_p$$

Eq. 21

Now we calculate the energy balance for the upward and the downward flowing brine in a vertical layer. To simplify the calculations, we combine the two pipes in which the brine flows in the same direction and treat them as a single element for computational purposes. The mass of this element is then

$$m = 2 \pi r_0^2 \int \rho_{\text{Sole}}$$

Eq. 22

The energy balance for such an element gives:

$$T_{\text{down}_{k+1,i}} = T_{\text{down}_{k+1,i-1}} + \left(T_{\text{down}_{k+1,i}} - T_{\text{down}_{k+1,i-1}} \right) \frac{L_0 \cdot \Delta t}{m \cdot c_p}$$

Eq. 23

and in the upward direction

$$T_{\text{up}_{k+1,i}} = T_{\text{up}_{k+1,i-1}} + \left(T_{\text{up}_{k+1,i}} - T_{\text{up}_{k+1,i-1}} \right) \frac{L_0 \cdot \Delta t}{m \cdot c_p}$$

Eq. 24

with the boundary condition

$$T_{\text{down}_{k+1,0}} = T_{\text{sink}}$$

Eq. 25

$$T_{\text{up}_{k+1,0}} = T_{\text{down}_{k+1, \text{DimAxi}}}$$

Eq. 26

$$T_{\text{Source}} = T_{\text{up}_{k+1, \text{DimAxi}}}$$

These equations have to be solved in direction of the flowing brine.

Steady-state calculation of the brine

As an option, a steady-state calculation can be carried out for the brine. To do so, we set the input parameter Stationer = 1. Then the energy balance gives us

$$T_{\text{down}_{i}} = \left(\frac{L_0 \cdot T_{\text{down}_{i-1}} + \frac{L_i}{2} T_{\text{Earth}_{i,1}}}{L_0 + \frac{L_i}{2}} \right)$$

Eq. 27

and

$$T_{\text{up}_{i}} = \left(\frac{L_0 \cdot T_{\text{up}_{i-1}} + \frac{L_i}{2} T_{\text{Earth}_{i, \text{DimAxi}-i,1}}}{L_0 + \frac{L_i}{2}} \right)$$

Eq. 28

Fig. 5: Non steady-state simulation of the brine with an explicit time-step method
Outer boundary condition

For the outer boundary condition, the analytical formula of Werner [5] for constant heat extraction can be adapted for the present problem. This formula belongs to a group of analytical solutions first described by Kelvin in his line source theory. By superposing constant heat extractions, starting at different time steps, it is possible to calculate the temperature profile at the outer boundaries of the simulation area and even to predict the refilling of the temperature sink in the summer properly.

The temperature drop in the earth in function of the distance from the borehole and time can be written as:

$$
\Delta T(r, t) = \frac{\dot{q}}{4 \pi \lambda} W(u)
$$

Eq. 29

with

$$
W(u) = \left[-0.5772 - \ln(u) + u - \frac{u^2}{2!} + \frac{u^3}{3!} - \frac{u^4}{4!} + \ldots\right]
$$

Eq. 30

and

$$
u(r, t) = \frac{c_{p,\text{Earth}} P_{\text{borehole}}}{4 t \lambda_{\text{Earth}}} r^2
$$

Eq. 31

In these formulas, the specific heat extraction

$$\dot{q} = \frac{\dot{Q}}{\text{borehole length}}
$$

Eq. 32

has to be constant. Since in real boreholes the heat extraction is not constant, we must superpose different constant heat extractions \dot{q}_i starting at different time steps to get a variable heat extraction:

To get the temperature drop at the time $(n+\Delta t)$ we have to add all the effects of this constant heat extractions in the following way:

$$
\Delta T(r, t = n \Delta t) = \sum_{i=1}^{n} \frac{W(u(r, t = i \Delta t))}{4 \pi \lambda} \left[\dot{q}_{n-i} - \dot{q}_{n-i-1}\right]
$$

Eq. 33

with

$$\dot{q}_0 = 0
$$

Eq. 34

Thus the temperature at the outer boundary of the simulation area can be written as:

$$T_{\text{Earth}(\text{DimRad} + 1)} = T_0(i) - \Delta T(r = r_{\text{DimRad}})
$$

Eq. 35

Of course this has to be calculated for each vertical layer with its own specific heat extraction rate.

These outer boundary conditions are calculated weekly and then held constant during the whole week.

Pressure drop

The friction factor ξ can be calculated for laminar flow ($Re < 2'300$) with

$$\xi = \frac{64}{Re}
$$

Eq. 36

and according to the recommendations of Merker [3] for turbulent flow ($Re > 2'300$) with

$$\xi = \frac{1}{\left(182 \log(Re) - 164\right)^2}
$$

Eq. 37

The pressure drop is then calculated with

$$\Delta p = \frac{[\text{borehole length}]^2 P_{\text{borehole}} v^2}{2D_i}
$$

Eq. 38
Heat transfer coefficient

The heat transfer coefficient can be calculated from the Nusselt Number:

\[\alpha_1 = \frac{Nu(Re, Pr) \lambda_{Solr}}{D_i} \]

Eq. 39

When we have laminar flow (\(Re < 2'300\)), the Nusselt Number is taken constant:

\[Nu_{lam} = 4.36 \]

Eq. 40

With turbulent flow (\(Re > 10'000\)), the Petukhov Formula [3] is used:

\[Nu_{turb} = \frac{\frac{\varepsilon}{8}}{K_1 + K_2 \left(\frac{\varepsilon}{8} \left(Pr^{2/3} - 1 \right) \right)} \frac{Re}{Pr} \]

Eq. 41

with

\[K_1 = 1 + 27.2 \left(\frac{\varepsilon}{8} \right) \]

Eq. 42

\[K_2 = 11.7 + 18 \ Pr^{-1/3} \]

Eq. 43

In the transition laminar - turbulent (\(2'300 < Re < 10'000\)) we use

\[Nu = Nu_{lam} \exp \left[\ln \left(\frac{Nu_0}{Nu_{lam}} \right) \ln \left(\frac{Re}{2'300} \right) \right] \]

Eq. 44

with

\[Nu_{lam (Re = 10'000)} = \frac{\frac{\varepsilon_0}{107} + K_2 \left(\frac{\varepsilon_0}{8} \left(Pr^{2/3} - 1 \right) \right)}{\lambda_{Solr}} \]

Eq. 45

\[\varepsilon_0 = 0.031437 \]

Eq. 46

When the pump is not running, we use the following heat transfer coefficient:

\[\alpha_0 = \frac{\lambda_{Solr}}{D_i / 2 \left(1 - \sqrt{0.5} \right)} \]

Eq. 47

The heat transfer coefficient is only used, when \(R_1\) is calculated internally.

Flow chart

The present model is calculating internally with smaller timesteps. These are optimized in the code, so the user does not have to be concerned with them.

![Flow chart of the code](image-url)
Component configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fortran variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stationer</td>
<td>Flag to set the calculation mode of the brine (1: steady-state, 0: non steady-state)</td>
</tr>
<tr>
<td>2</td>
<td>calcBTR</td>
<td>Flag to specify the means of calculating the thermal resistances of the borehole: 1: calculate R_1 and R_2 internally 2: R_1 is an input parameter R_2 is calculated internally 3: R_1 = f(R_o), R_2 is calculated internally 4: R_1 = f(R_o), R_2 = f(R_o,R_b)</td>
</tr>
<tr>
<td>3</td>
<td>Auslegungsmassenstrom</td>
<td>Mass flow rate of the brine, used to calculate the heat transfer coefficient α_i</td>
</tr>
<tr>
<td>4</td>
<td>Rechenradius</td>
<td>Radius of the outer boundary r_m of the simulation area</td>
</tr>
<tr>
<td>5</td>
<td>Gitterfaktor</td>
<td>Grid factor f</td>
</tr>
<tr>
<td>6</td>
<td>Sondenlaenge</td>
<td>Depth of the borehole</td>
</tr>
<tr>
<td>7</td>
<td>Sonden-durchmesser</td>
<td>Inner diameter of the pipes D_i</td>
</tr>
<tr>
<td>8</td>
<td>Bohrdurchmesser</td>
<td>Borehole Diameter D_o</td>
</tr>
<tr>
<td>9</td>
<td>TGrad</td>
<td>Axial temperature gradient (downward) in the earth at the start of the simulation</td>
</tr>
<tr>
<td>10</td>
<td>Jahresmitteltemp</td>
<td>Average annual air temperature</td>
</tr>
<tr>
<td>11</td>
<td>Bodenerwaermung</td>
<td>Average yearly temperature difference between the soil surface and the air</td>
</tr>
<tr>
<td>12</td>
<td>cpFill</td>
<td>Specific heat capacity of the filling material</td>
</tr>
<tr>
<td>13</td>
<td>rhoFill</td>
<td>Density of the filling material</td>
</tr>
<tr>
<td>14</td>
<td>lambdaFill</td>
<td>Heat conductivity of the filling material</td>
</tr>
<tr>
<td>15</td>
<td>cpSole</td>
<td>Specific heat capacity of the brine</td>
</tr>
<tr>
<td>16</td>
<td>rhoSole</td>
<td>Density of the brine</td>
</tr>
<tr>
<td>17</td>
<td>lambdaSole</td>
<td>Heat conductivity of the brine</td>
</tr>
<tr>
<td>18</td>
<td>nueSole</td>
<td>Kinematic viscosity of the brine</td>
</tr>
<tr>
<td>19</td>
<td>MonitorAx1</td>
<td>Axial coordinate of the 1st temperature monitor</td>
</tr>
<tr>
<td>20</td>
<td>MonitorRad1</td>
<td>Radial coordinate of the 1st temperature monitor</td>
</tr>
<tr>
<td>21</td>
<td>MonitorAx2</td>
<td>Axial coordinate of the 2nd temp. monitor</td>
</tr>
<tr>
<td>22</td>
<td>MonitorRad2</td>
<td>Radial coordinate of the 2nd temp. monitor</td>
</tr>
<tr>
<td>23</td>
<td>MonitorAx3</td>
<td>Axial coordinate of the 3rd temp. monitor</td>
</tr>
<tr>
<td>24</td>
<td>MonitorRad3</td>
<td>Radial coordinate of the 3rd temp. monitor</td>
</tr>
<tr>
<td>25</td>
<td>MonitorAx4</td>
<td>Axial coordinate of the 4th temp. monitor</td>
</tr>
<tr>
<td>26</td>
<td>MonitorRad4</td>
<td>Radial coordinate of the 4th temp. monitor</td>
</tr>
<tr>
<td>27</td>
<td>MonitorAx5</td>
<td>Axial coordinate of the 5th temp. monitor</td>
</tr>
<tr>
<td>28</td>
<td>MonitorRad5</td>
<td>Radial coordinate of the 5th temp. monitor</td>
</tr>
<tr>
<td>29</td>
<td>MonitorAx6</td>
<td>Axial coordinate of the 6th temp. monitor</td>
</tr>
<tr>
<td>30</td>
<td>MonitorRad6</td>
<td>Radial coordinate of the 6th temp. monitor</td>
</tr>
<tr>
<td>31</td>
<td>MonitorAx7</td>
<td>Axial coordinate of the 7th temp. monitor</td>
</tr>
<tr>
<td>32</td>
<td>MonitorRad7</td>
<td>Radial coordinate of the 7th temp. monitor</td>
</tr>
<tr>
<td>33</td>
<td>MonitorAx8</td>
<td>Axial coordinate of the 8th temp. monitor</td>
</tr>
<tr>
<td>34</td>
<td>MonitorRad8</td>
<td>Radial coordinate of the 8th temp. monitor</td>
</tr>
<tr>
<td>35</td>
<td>DimRad</td>
<td>Number of simulation points in radial direction</td>
</tr>
<tr>
<td>36</td>
<td>DimAxi</td>
<td>Number of simulation points in axial direction</td>
</tr>
</tbody>
</table>

36 + i cpErde(i) Specific heat capacity of the earth in the axial layer i
36 + i + DimAxi rhoErde(i) Density of the earth in the axial layer i
36+i+2*DimAxi lambdaErde(i) Heat conductivity of the earth in the axial layer i
37 + 3*DimAxi R1 or Ra or Rb R1 if calcBTR = 2 R2 if calcBTR = 3 R3 if calcBTR = 4
38 + 3*DimAxi Rb Rb if calcBTR = 4
<table>
<thead>
<tr>
<th>Input</th>
<th>Fortran variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Massenstrom</td>
<td>Total mass flow rate for both pipes together</td>
</tr>
<tr>
<td>2</td>
<td>TSink</td>
<td>Inlet temperature to the borehole (evaporator outlet temperature)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Fortran variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Massenstrom</td>
<td>Total mass flow rate for both pipes together</td>
</tr>
<tr>
<td>2</td>
<td>TSource</td>
<td>Source temperature of the brine</td>
</tr>
<tr>
<td>3</td>
<td>Massenstrom cpSo3.6* (TSource - TSink)</td>
<td>Heat transfer rate out of the borehole</td>
</tr>
<tr>
<td>4</td>
<td>TEarth (monitor1)</td>
<td>1st monitor temperature</td>
</tr>
<tr>
<td>5</td>
<td>TEarth (monitor2)</td>
<td>2nd monitor temperature</td>
</tr>
<tr>
<td>6</td>
<td>TEarth (monitor3)</td>
<td>3rd monitor temperature</td>
</tr>
<tr>
<td>7</td>
<td>TEarth (monitor4)</td>
<td>4th monitor temperature</td>
</tr>
<tr>
<td>8</td>
<td>TEarth (monitor5)</td>
<td>5th monitor temperature</td>
</tr>
<tr>
<td>9</td>
<td>TEarth (monitor6)</td>
<td>6th monitor temperature</td>
</tr>
<tr>
<td>10</td>
<td>TEarth (monitor7)</td>
<td>7th monitor temperature</td>
</tr>
<tr>
<td>11</td>
<td>TEarth (monitor8)</td>
<td>8th monitor temperature</td>
</tr>
</tbody>
</table>

Literature

